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SUMMARY

     Recently applications have exposed polymer matrix composite materials to very high
strain rate loading conditions, requiring an ability to understand and predict the material
behavior under these extreme conditions.  In this second paper of a two part report, a
three-dimensional composite micromechanical model is described which allows for the
analysis of the rate dependent, nonlinear deformation response of a polymer matrix
composite.  Strain rate dependent inelastic constitutive equations utilized to model the
deformation response of a polymer are implemented within the micromechanics method.
The deformation response of two representative laminated carbon fiber reinforced
composite materials with varying fiber orientation has been predicted using the described
technique.  The predicted results compare favorably to both experimental values and the
response predicted by the Generalized Method of Cells, a well-established
micromechanics analysis method.

LIST OF SYMBOLS

Do inelastic material constant representing maximum inelastic strain rate
E elastic modulus of material
G shear modulus of material
kf fiber volume ratio of composite
n inelastic material constant representing rate dependence of material
q inelastic material constant representing hardening rate of material
Sij compliance matrix components
sij deviatoric stress components
Zo material constant representing initial isotropic hardness of material
εij strain tensor components
εI

ij inelastic strain components
εe

I effective inelastic strain
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ν Poisson’s ratio
γij engineering shear strain components
Ωij back stress component
Ωm inelastic material constant representing value of back stress at saturation
σij stress tensor components
• quantities with dots above them represent rates

Subscripts

Af bottom left subcell of composite unit cell (fiber material)
Am bottom right subcell of composite unit cell (matrix material)
B1 top left subcell of composite unit cell (matrix material)
B2 top right subcell of composite unit cell (matrix material)
A region of composite unit cell consisting of subcells Af and Am
B region of composite unit cell consisting of subcells B1 and B2
A′ region of composite unit cell consisting of subcells Af and B1
B′ region of composite unit cell consisting of subcells Am and B2
f fiber related material property
m matrix related material property
11,22,33 normal stress or strain components
12,13,23 shear stress or strain components

INTRODUCTION

     NASA Lewis Research Center has an ongoing research program to develop new
technologies to improve aircraft engine fan containment systems.  The program contains a
feasibility study to replace metallic containment systems with hardwall containment
systems composed of polymer matrix composites.  In such an application, the composite
would be loaded at strain rates up to several hundred per second.  In designing a
containment system composed of polymer matrix composites, the ability to correctly
model the constitutive and failure behavior of the composite under the high rate loading
condition is of critical importance.

     Experimental techniques to characterize the behavior of polymer matrix composites
under low strain rate loading conditions have been well established for many years.
Furthermore, numerous analytical techniques have been developed to model the
constitutive and failure behavior of composites under quasi-static loads.  However, the
analytical methods required to characterize and model the constitutive and failure
behavior of polymer matrix composites under high strain rates are not nearly as well
developed as for quasi-static loads.  Furthermore, the effects of strain rate on the material
properties and response is still an area of active investigation.  In addition, composites
composed of more ductile matrix materials are likely to be used in high strain rate impact
applications.  The deformation response of these materials is likely to be nonlinear.  The
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majority of the modeling efforts for polymer matrix composites, however, have assumed
linear elastic material response.

     This paper, the second of a two-part report, describes the development of a composite
micromechanical model, which allows for the analysis of the rate dependent, nonlinear
deformation response of a polymer matrix composite.  In composite micromechanical
modeling, the effective properties and response of a composite are computed based on the
properties and response of the individual constituents.  To analyze the behavior of the
polymer matrix constituent, strain rate dependent inelastic constitutive equations were
utilized.  These equations and their application are described in a companion paper [1].

     This report begins with some background information.  A summary of the detailed
literature review given in [1], which describes previous efforts to model the rate
dependent response of polymer matrix composites, will be discussed.  Furthermore, an
overview of the micromechanical analysis techniques that have been developed by
previous researchers will be given.

     After the background section, a brief overview of the constitutive equations utilized to
model the deformation response of the polymer matrix will be discussed.  Next, the
micromechanics techniques utilized to predict the effective properties and response of the
composite will be described in detail.  These equations are designed to predict the
response of a composite ply at an arbitrary fiber orientation angle.  The numerical
implementation of the methodology will also be discussed.

     Finally, results predicted using the described micromechanics technique will be
presented and discussed.  The deformation response of two representative carbon fiber
reinforced polymer matrix composites, Fiberite IM7/977-2 and AS4/PEEK, will be
included.  Tensile stress-strain curves for both materials will be computed for a variety of
fiber orientations and strain rates.  Predictions made using the presented methodology
will be compared to experimental values and results obtained using the Generalized
Method of Cells approach [2], a well-established micromechanics analysis method.

BACKGROUND

     In a previous report [1], a detailed discussion of previous research in the areas of
experimental determination of strain rate effects on composite material properties, rate
dependent constitutive modeling of polymers and rate dependent constitutive modeling of
polymer matrix composites was presented.  Some of the key points of this review will be
summarized here.  Researchers such as Daniel, et. al. [3] determined experimentally that
the material properties along the fiber direction of a carbon fiber reinforced polymer
matrix composite showed little variation with strain rate.  However, the transverse and
shear moduli and strengths exhibited a significant variation with increasing strain rate.
These results indicated that for these materials the deformation response is rate
dependent, and the polymer matrix drives the rate dependence of the material properties.
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     To analyze the rate dependent deformation response of polymer matrix composites,
both macroscopic and micromechanical techniques have been used.  As an example of a
macroscopic method, Weeks and Sun [4] developed a model in which a carbon fiber
reinforced thermoplastic was considered to be an anisotropic, homogenous material.  The
behavior of an off-axis composite ply was modeled as a function of the fiber orientation
angle.  The inelasticity of the composite response was captured through the use of a
quadratic plastic potential function, and the rate dependence of the material was
simulated by making the material properties strain rate dependent.  An example of a
micromechanical technique is the work by Aidun and Addessio [5].  In this work, a
nonlinear elastic polymer constitutive equation was implemented within the Method of
Cells [6] micromechanics equations in order to compute the high strain rate response of a
polymer matrix composite.  Much of the remaining work in high strain rate constitutive
modeling has assumed elastic, rate independent material behavior.  As the actual material
response is often rate dependent and nonlinear for high strain rate impact applications,
there exists a significant need for further work in incorporating these types of behaviors
into analytical models.

     To predict the effective properties and response of a composite material using a
micromechanics approach, several different methodologies have been utilized.  These
techniques have been thoroughly reviewed and discussed in works such as [6-10].  In
general, three types of techniques are used.  All of these approaches are based on
analyzing the behavior of a unit cell of the composite.  The unit cell is the smallest
portion of the composite for which the behavior of the unit cell is considered to be
representative of the response of the composite as a whole.  The simplest types of
techniques are mechanics of materials based methods, in which various uniform stress
and uniform strain assumptions are utilized within the composite unit cell to compute the
effective properties and response of the material.  Examples of this type of approach
include the traditional “rule of mixtures” equations [7], and the simplified
micromechanics equations developed by Murthy and Chamis [11].  While this approach
involves a great deal of approximation and simplification, the resulting equations are very
simple in form, are very easy to implement within a computer code, and are very
computationally efficient.

     A more sophisticated method to compute the effective properties of composite
materials involves utilizing continuum mechanics techniques.  In this type of approach,
the equations of continuum mechanics are solved in an average sense within the unit cell.
Examples of this type of technique include the Concentric Cylinders Model [9], the Self
Consistent Method [9], the Mori-Tanaka Method [12] and the Method of Cells [6].
Continuum mechanics methods more completely satisfy the field equations of mechanics,
resulting in the physics of the problem being represented more accurately, than in
mechanics of materials techniques.  However, these approaches still often lend
themselves to closed form solutions, which permit reasonable implementation and
execution of these techniques within a computer code.
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     The most accurate and sophisticated micromechanics techniques are the numerically
based methods.  In this approach, the fiber and matrix are explicitly modeled using either
finite elements or boundary elements.  The effective response of the unit cell is then
computed by conducting a finite element or boundary element analysis.  Examples of this
approach can be found in [13] and [14].  A numerical technique has also been developed
by Walker, et. al. [15,16], in which integral equations are developed using Fourier series
and Green’s function approaches.  The integral equations are then solved using numerical
methods.  This type of analysis yields the greatest accuracy, but the execution times
required to conduct the analysis on a computer are often quite substantial.   Analysis
methods of this type will not be considered in this report, where only predicting the
effective deformation response of a composite will be considered.  Numerical techniques
could prove useful in gaining insight into the detailed local stress states present in the
composite unit cell.  Examination of the detailed local stress states might be of assistance
in the development of analytical strength and failure models.

MATRIX CONSTITUTIVE MODEL

     The Ramaswamy-Stouffer viscoplastic state variable model [17], which was originally
developed for metals, was modified to simulate the rate dependent inelastic response of
the polymer matrix materials.  As discussed in [1], there are sufficient similarities
between the inelastic deformation response of metals and the inelastic response of
polymers to permit the use of constitutive equations which were developed for metals to
analyze polymers.  It should be noted that the effects of hydrostatic stress states on the
inelastic strains are currently being neglected.  In the modified Ramaswamy-Stouffer
model, the inelastic strain rate, I

ijε� , is defined as a function of the overstress, or difference

between the deviatoric stress components, sij , and back stress state variable components,
Ωij , in the form:
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where Do, Zo, and n are material constants, and K2 is defined as follows:
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The elastic components of strain are added to the inelastic strain to obtain the total strain.
The following relation defines the back stress variable rate:
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where q is a material constant, Ωm is a material constant which represents the maximum
value of the back stress, and I

eε�  is the effective inelastic strain rate, defined as follows:

ijij
I
e εεε ���

3

2= (4)

where repeated indices indicate summation using the standard indicial notation
definitions [17].

     To obtain the material constants for this material model, the saturation stress values
(the stress level where the stress-strain curve flattens out) from several constant strain rate
tensile tests are utilized.  In addition, the average inelastic strain at saturation is used.
Equations (1)-(4) and linear regression techniques are then applied to obtain the material
constants.  More details on the constitutive equations and obtaining the material constants
can be found in [1].

MICROMECHANICS MODEL

Overview

     The effective properties and deformation response of the composite materials
examined in this study were computed by using a micromechanics model.  As mentioned
previously, in micromechanics methods the effective properties and deformation response
of a composite material unit cell are predicted based on the properties and response of the
individual constituents.  For this study, the composite unit cell will be defined as
consisting of a single continuous fiber and its surrounding matrix.  Only laminated
composites will be analyzed; woven composites will not be considered at the present
time.  The matrix constituent and the composite as a whole will be assumed to have a
sufficient degree of ductility such that the inelastic strain levels are significant.

     The composites will be assumed to have a periodic, square, fiber packing arrangement,
with perfect bonding between the fiber and the matrix.  These assumptions are common
in the micromechanical analysis of composite materials [7-10].  While actual composites
often have more complicated fiber architectures [18], for this preliminary study a
periodic, square fiber packing was utilized in order to simplify the development of the
micromechanics equations and to minimize the computational effort required.  If future
analytical results indicate that fiber packing plays a significant role in either the
deformation or failure of polymer matrix composites under high strain rate loads,
modifications to the micromechanical models could be made or selected detailed finite
element analyses might be performed.  In addition, the assumption of perfect bonding, a
common assumption for polymer matrix composites, was made in order to simplify the
development of the micromechanics equations.  If fiber/matrix debonding turns out to
play a significant role in the strength and failure analyses of the materials under
consideration, appropriate modifications could be made to the equations.
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     Only unidirectional composites at various fiber orientation angles will be analyzed
with the micromechanics techniques considered here.  To model full laminated
composites with varying fiber orientation through the thickness, the finite element
method will be utilized.  In such an analysis, a layer of elements will be used to model a
single ply of the composite at a specified orientation angle.  Multiple layers of elements
will then be used to simulate the composite laminate.  An analysis of this type will not be
considered in the present study, but will be conducted at a future date.

     As discussed in a previous report [1], some efforts have been made by previous
researchers to utilize equations of state on the micromechanical level in modeling the
high strain rate response of polymer matrix composites.  Equations of state are utilized to
model the effects of changing density on the hydrostatic stress state in the material.
These equations are usually only required for very high strain rate loading conditions.
The strain rates utilized in this study will be assumed to be low enough that equation of
state considerations will not be required.

     The deformation response of the polymer matrix materials utilized in the composites
considered in this study will be simulated using the modified Ramaswamy-Stouffer
constitutive equations described in the previous section.  The fibers of the composite will
be assumed to be linear elastic, with rate independent properties.  Temperature effects
will not be considered, and small strain conditions will be assumed.  Further discussions
of the reasons and consequences of these assumptions can be found in [1].

Micromechanics Equations Overview

     The micromechanics method utilized in this study is based on a method proposed by
Sun and Chen [19].  In this approach, the composite unit cell is broken up into three
subcells.  One subcell represents the fiber while the remaining two subcells represent the
matrix.  This approach is similar to the Method of Cells approach utilized by Aboudi [6].
However, in the Method of Cells a displacement field is assumed for each subcell, and
the equations of continuity and equilibrium are utilized to solve for the subcell and
effective displacements and stresses.  In the Sun and Chen approach, on the other hand,
uniform stress and uniform strain assumptions, in combination with the material
constitutive equations, are utilized to solve for the stresses and strains for each subcell
and for the overall composite.  Furthermore, the Sun and Chen model was developed for
a plane stress condition, and classical plasticity theory was utilized to account for any
inelastic strains which might be present.  In addition, the Sun and Chen model utilized a
stress controlled loading condition, which is not particularly useful for finite element
applications.

     Robertson and Mall revised and expanded the Sun and Chen model [20-22].  In this
technique, the plane stress assumption was removed, and the full three-dimensional stress
and strain state was computed for each subcell and for the overall composite.  Since the
model is fully three-dimensional, four subcells are utilized to represent the unit cell.  One
subcell is used to represent the fiber, and the remaining three subcells represent the
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surrounding matrix material.  The Robertson and Mall model also utilized unified state
variable constitutive equations to compute the inelastic strains in the matrix material.
However, the equations are still designed to utilize stress controlled loading, in which the
subcell stresses and strains are computed based on a defined effective stress condition.
Since Robertson and Mall concentrated on analyzing metal matrix composites, where
fiber/matrix debonding is significant, the equations were also modified to allow for the
presence of a weak fiber/matrix interface.  Pindera and Bednarcyk [23] utilized a similar
approach in reformulating the Generalized Method of Cells [2].  In this work, the original
equations of the Generalized Method of Cells were reformulated so that the subcell
stresses are solved for in terms of the total strains and the subcell inelastic strains.

     The micromechanics model utilized in this study is similar to that utilized by
Robertson and Mall, in that uniform stress and uniform strain assumptions are applied to
a four subcell unit cell, which is displayed in Figure 1.  In this figure, subcell “Af” is the
fiber subcell and subcells “Am”, “B1”, and “B2” are composed of matrix material.  The
material axis system is as shown in the figure.  The “1” coordinate direction is along the
fiber direction, while the “2” and “3” coordinate directions are perpendicular to the fiber.
The fiber is idealized as having a square shape, with the side length equal to the square
root of the fiber volume fraction.  Assuming a square fiber shape will result in the
interfacial stresses not being predicted correctly.  However, due to the perfect bonding
assumption, as well as the expected failure modes in the chosen application, the accurate
prediction of interfacial stresses will be assumed to not be critical.  The full three-
dimensional stresses and strains are computed for each subcell and for the unit cell as a
whole.  By removing the plane stress assumption, thick composites can be analyzed.
Furthermore, through the thickness stresses can be more accurately computed, which will
most likely be important in modeling high strain rate impact normal to the plane of the
laminate.  In the model utilized in this study, strain controlled loading is assumed.  The
loading condition is the primary difference between this method and the Robertson and
Mall technique.  Utilization of strain controlled loading will simplify the implementation
of this model into a finite element code.  In a user defined material subroutine in a finite
element code, strains are passed into the routine, and stresses are computed and passed
back to the calling routines.

Micromechanics Equations Derivation

     The unit cell utilized in the development of the micromechanics equations is shown in
Figure 1.  The bottom layer of subcells, with subcells “Af” and “Am”, is referred to as
region “A”.  The top layer of subcells, with subcells “B1” and “B2”, is referred to as
region “B”.  Region “A′” is defined as consisting of subcells “Af” and “B1”, and region
“B ′” is defined as consisting of subcells “Am” and “B2”.  The subscript “f” will be used
to denote fiber related properties, and the subscript “m” will be used to denote matrix
related properties.  Subscripts “Af”, “Am”, “B1” and “B2” will be used to denote stresses
and strains of the individual subcells.  Subscripts “A”, “B”, “A′”, and “B′” will be used to
denote stresses and strains in the corresponding regions as defined above.  Stresses and
strains with no region identifying subscript will be assumed to represent the total effective
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stresses and strains for the unit cell.  A superscript “I” will be used to denote inelastic
strains.  The subscripts “11”, “22” and “33” will be used to define normal stresses, strains
and material properties, with the coordinate directions as defined in Figure 1.  The
subscripts “12”, “13” and “23” will be used to define shear stresses, strains, and material
properties.

     The symbol “E” represents the elastic modulus, the symbol “G” represents the shear
modulus, and the symbol “ν” represents the Poisson’s ratio.  The symbol “σij ” represents
stress tensor components, the symbol “εij ” represents strain tensor components, and the
symbol “γij ” represents engineering shear strain components.  The symbol “kf” represents
the fiber volume ratio of the composite.

     The stress and strain in each subcell are assumed to be the effective stress and strain,
equal to the integral of the actual stress or strain over the volume of the subcell.  These
values are assumed to be uniform over the volume of the subcell.  The effective stress and
strain in region “A”, region “B”, region “A′” and region “B′” are defined as the volume
average of the stresses and strains in the corresponding subcells.  The effective stress and
strain in the unit cell are defined as the volume average of the stresses and strains in
region A and region B (or region A′ and region B′).  To determine the volume average, a
weighted sum is computed where the value (stress or strain) in each subcell or region is
weighted by the ratio of the volume of the subcell (or region) over the total volume of the
region (or unit cell).

     The components in the transversely isotropic compliance matrix (the inverse of the
stiffness matrix) for the fiber are defined as follows.  Note that the symbol Sij , which is
used to denote the terms in the compliance matrix, is not to be confused with the symbol
sij , which was used in Equations (1)-(4) to represent the components of deviatoric stress.
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where, for example, E11f  represents the longitudinal elastic modulus of the fiber (along
the 1 direction axis in Figure 1), ν12f represents the axial Poisson’s ratio of the fiber, and
G12f represents the in-plane shear modulus of the fiber.

     The components of the compliance matrix for the isotropic matrix material are defined
as follows:

S
E
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S
Gm

m
m

m

m
m

m
11 12 66

1 1
= =

−
=, ,

ν
(6)

where Em represents the elastic modulus of the matrix, νm represents the Poisson’s ratio
of the matrix, and Gm represents the shear modulus of the matrix.
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     The transversely isotropic compliance matrix is utilized to relate the strains to the
stresses, using the following relations:
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IS 12126612 *2* εσγ += (8)

IS 13136613 *2* εσγ += (9)

IS 23234423 *2* εσγ += (10)

     The addition of the inelastic strain components to the standard transversely isotropic
elastic constitutive matrix is how the matrix inelasticity is incorporated into the
constitutive relations.  For the linearly elastic fiber, these components can be neglected.
For the isotropic matrix, S23 is set equal to S12, S22 is set equal to S11, and S44 is set equal
to S66.

     The effective total strain state in the composite unit cell is assumed to be given or
computed before beginning the micromechanics computations.  Furthermore, the inelastic
strains in each subcell are assumed to be either known or estimated.

Normal Stresses and Strains

     For the normal stresses and strains (11, 22 and 33), the following uniform stress and
uniform strain assumptions are made:
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The effective stresses and strains in regions A, B, A′ and B′, as well as for the composite
unit cell, are computed using volume averaging, yielding the following expressions:

ε ε ε22 22 221A Af Amkf kf= + −* ( ) * (16)

ε ε ε22 22 1 22 21B B Bkf kf= + −* ( ) * (17)

ε ε ε33 33 33 11′ = + −A Af Bkf kf* ( ) * (18)

ε ε ε33 33 33 21′ = + −B Am Bkf kf* ( ) * (19)

σ σ σ11 11 111A Af Amkf kf= + −* ( ) * (20)

σ σ σ11 11 1 11 21B B Bkf kf= + −* ( ) * (21)

σ σ σ11 11 111= + −kf kfA B* ( ) * (22)

σ σ σ22 22 221= + −kf kfA B* ( ) * (23)

σ σ σ33 33 331= + −′ ′kf kfA B* ( ) * (24)

     The constitutive relations for the fiber and matrix can be defined as follows, using the
relations defined in Equation (7):

ε σ σ σ11 11 11 12 22 12 33f f f f f f fS S S= + +* * * (25)

ε σ σ σ22 12 11 22 22 23 33f f f f f f fS S S= + +* * * (26)

ε σ σ σ33 12 11 23 22 22 33f f f f f f fS S S= + +* * * (27)

ε σ σ σ ε11 11 11 12 22 12 33 11m m m m m m m m
IS S S= + + +* * * (28)

ε σ σ σ ε22 12 11 11 22 12 33 22m m m m m m m m
IS S S= + + +* * * (29)

ε σ σ σ ε33 12 11 12 22 11 33 33m m m m m m m m
IS S S= + + +* * * (30)

     By solving Equations (25) and (28) for each subcell, and by utilizing the appropriate
uniform stress and uniform strain assumptions, the following expressions are obtained.  It
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should be noted that the MATHCAD software package [24] was utilized to assist in
carrying out the algebraic computations presented in this derivation.

( )σ ε σ σ11
11

11 12 22 12 33

1
Af

f
f A f AS

S S= − − ′* * (31)

( )σ ε σ σ ε11
11

11 12 22 12 33 11

1
Am

m
m A m B Am

I

S
S S= − − −′* * (32)

( )σ ε σ σ ε11 1
11

11 12 22 12 33 11 1

1
B

m
m B m A B

I

S
S S= − − −′* * (33)

( )σ ε σ σ ε11 2
11

11 12 22 12 33 11 2

1
B

m
m B m B B

I

S
S S= − − −′* * (34)

Equations (31)-(34) can then be substituted into Equations (26), (27), (29), and (30) for
each subcell, applying the appropriate uniform stress and uniform strain assumptions.  By
substituting the resulting expressions into Equations (16)-(19), the following system of
equations results:

( )

ε ε ε

ε σ

σ

22

12

11

12

11
11

12

11
11

22 22

12
2

11
11

12
2

11
22

23

12
2

11
33

1 1

1 1

1

A

f

f

m

m

m

m
Am

I

Am
I

f

f

f
m

m

m
A

f

f

f
A

kf
S

S
kf

S

S
kf

S

S

kf kf S
S

S
kf S

S

S

kf S
S

S
kf

− + −








 + −

− − = −








 + − −



















+ −


















 + −′

( ) ( )

( ) ( )

S
S

Sm
m

m
B12

12
2

11
33−

















 ′σ

(35)

ε ε ε ε ε

ε σ σ

σ

22
12

11
11

12

11
11 1 22 1

12

11
11 2

22 2 11
12
2

11
22 12

12
2

11
33

12
12
2

11
33

1

1

1

B
m

m

m

m
B

I
B

I m

m
B

I

B
I

m
m

m
B m

m

m
A

m
m

m
B

S

S
kf

S

S
kf kf

S

S

kf S
S

S
kf S

S

S

kf S
S

S

− + − + −

− − = −






 + −



















+ − −


















′

′

( )

( )

( )

(36)
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ε ε ε

ε σ

σ

33

12

11

12

11
11

12

11
11 1

33 1 22

12
2

11
11

12
2

11
33

23

12
2

11
22

1 1

1 1

′

′

− + −








 + −

− − = −








 + − −



















+ −


















 +

A

f

f

m

m

m

m
B

I

B
I

f

f

f
m

m

m
A

f

f

f
A

kf
S

S
kf

S

S
kf

S

S

kf kf S
S

S
kf S

S

S

kf S
S

S

( ) ( )

( ) ( )

( )1 12
12
2

11
22− −

















kf S

S

Sm
m

m
Bσ

(37)

ε ε ε ε ε

ε σ σ

σ

33
12

11
11

12

11
11 33

12

11
11 2

33 2 11
12
2

11
33 12

12
2

11
22

12
12
2

11
22

1

1

1

′

′

− + − + −

− − = −






 + −



















+ − −


















B
m

m

m

m
Am

I
Am

I m

m
B

I

B
I

m
m

m
B m

m

m
A

m
m

m
B

S

S
kf

S

S
kf kf

S

S

kf S
S

S
kf S

S

S

kf S
S

S

( )

( )

( )

(38)

Equations (35)-(38), together with Equations (31)-(34), can be solved for the required
subcell stresses.  Equations (12), (13), and (20)-(24) can then be used to solve for the
effective stress state in the unit cell.

In-Plane Shear Stresses and Strains

     For the in-plane shear (12) direction stresses and strains, the following uniform stress
and uniform strain assumptions are made:

γ γ γ12 12 12A B= = (39)

σ σ σ
σ σ σ

12 12 12

12 1 12 2 12

Af Am A

B B B

= =
= =

(40)

By applying volume averaging, the effective in-plane shear stresses and strains in each
region and for the composite unit cell are defined as follows:

γ γ γ

γ γ γ
12 12 12

12 12 1 12 2

1

1

A Af Am

B B B

kf kf

kf kf

= + −

= + −

* ( ) *

* ( ) *
(41)

σ σ σ12 12 121= + −kf kfA B* ( ) * (42)

     The constitutive relations for the fiber and matrix can be defined by the following
expressions, using the relation defined in Equation (8):
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γ σ12 66 12f f fS= * (43)

γ σ ε12 66 12 122m m m m
IS= +* * (44)

     By substituting Equations (43) and (44) into Equation (41), and using the appropriate
uniform stress and uniform strain assumptions, the following expressions are obtained.
These relations can be used to solve for the subcell in-plane shear stresses in region A and
region B, and thus in the individual subcells:

γ σ ε12 66 66 12 121 2 1= + − + −[ * ( ) * ] * * ( ) *kf S kf S kff m A Am
I (45)

γ σ ε ε12 66 12 12 1 12 22 2 1= + + −S kf kfm B B
I

B
I* * * * ( ) * (46)

Transverse Shear Stresses and Strains- (13) Direction

     The computation of the subcell stresses in the (13) direction is very similar to the
computation of the subcell stresses in the (12) direction, with the exception of using
regions A′ and B′ instead of regions A and B.  The uniform stress and uniform strain
assumptions thus becoming the following:

γ γ γ13 13 13′ ′= =A B (47)

σ σ σ
σ σ σ

13 13 1 13

13 13 2 13

Af B A

Am B B

= =
= =

′

′

(48)

The volume averaged stresses and strains in each region are computed using the
expressions:

γ γ γ

γ γ γ
13 13 13 1

13 13 13 2

1

1

′

′

= + −

= + −
A Af B

B Am B

kf kf

kf kf

* ( ) *

* ( ) *
(49)

σ σ σ13 13 131= + −′ ′kf kfA B* ( ) * (50)

By substituting Equations (43) and (44) (replacing the subscript “12” with “13” as
indicated by Equation (9)) into Equation (49), the transverse (13) shear stresses in the
individual subcells can be computed from the following equations along with the uniform
stress assumptions:

γ σ ε13 66 66 13 13 11 2 1= + − + −′[ * ( ) * ] * * ( ) *kf S kf S kff m A B
I (51)
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γ σ ε ε13 66 13 13 13 22 2 1= + + −′S kf kfm B Am
I

B
I* * * * ( ) * (52)

Transverse Shear Stresses and Strains- (23) Direction

     In computing the (23) direction subcell stresses and strains, the following uniform
stress assumptions are made:

σ σ σ23 23 23A B= = (53)

BBB

AAmAf

23223123

232323

σσσ
σσσ

==

==
(54)

The volume averaged shear strains in each region are then defined as follows:

22312323

232323

*)1(*

*)1(*

BBB

AmAfA

kfkf

kfkf

γγγ

γγγ

−+=

−+=
(55)

γ γ γ23 23 231= + −kf kfA B* ( ) * (56)

     The constitutive relations for the fiber and matrix are defined by using Equation (10):

γ σ23 44 23f f fS= * (57)

γ σ ε23 66 23 232m m m m
IS= +* * (58)

   By substituting Equations (57) and (58) into Equations (55) and (56), and by using the
uniform stress assumptions, the following expression is obtained which can be used to
compute the subcell transverse (23) direction shear stresses:

γ σ

ε ε ε
23 44 66 23

23 23 1 23 2

1

2 1 1

= + −

+ − + + −

[ * ( ) * ]*

* ( ) *[ * ( ) ( ) * ]

kf S kf S

kf kf kf

f m

Am
I

B
I

B
I

(59)

Numerical Implementation of Micromechanics Equations

     For the current study, a stand-alone computer code was developed in order to
implement and test the micromechanics equations.  A standard fourth order Runge-Kutta
explicit integration scheme [25] was utilized to integrate the rate dependent constitutive
equations.  Implicit integration algorithms are more numerically stable than explicit
integration techniques, and were utilized in the original development of the matrix
constitutive equations.  However, the micromechanics algorithm will most likely
eventually be implemented into a transient dynamic finite element code, which uses



NASA/TM—1998-208664 16

explicit integration techniques.  Therefore, the current algorithm was developed using an
explicit integration scheme in order to assure compatibility.  The Runge-Kutta method
was employed for this preliminary study due to its simplicity and ease of implementation.
Future efforts might include investigating more robust numerical techniques such as
semi-implicit algorithms, which provide the stability of implicit methods while still
maintaining the appearance of an explicit technique.

     As mentioned in the development of the equations, strain controlled loading is
assumed in the micromechanics algorithm.  Strains are specified in a particular coordinate
direction.  To impose the required Poisson and axial-shear coupling strains, effective
elastic properties for the composite at a specified fiber orientation angle are utilized.  To
compute the required elastic constants, the elastic constants in the material axis system
are computed using equations developed by Murthy and Chamis [11].  The elastic
constants in the structural axis system are then computed using standard techniques and
equations described in references such as [7], [10] and [26].  The material axis system is
the coordinate system shown in Figure 1.  The structural axis system is the axis system
along which the loads are applied.  The material coordinate system is obtained by rotating
the structural axis system about the “3” coordinate axis by an amount equal to the fiber
orientation angle.

     For the code execution, first the required geometric data (fiber volume ratio and fiber
orientation angle), constituent properties and load history data are read in from an input
file.  The required elastic constants in both material and structural coordinate systems are
computed, along with the required tensor transformation matrices.  For each time step, the
total strain rate in the load direction is computed.  The Runge-Kutta integration procedure
is then carried out to compute the total strain state in the structural axis system, as well as
the inelastic strain and back stress value in each subcell.  The total stresses in structural
coordinates are then computed using the total strains, appropriate tensor transformations,
and the micromechanics equations.  The calculations for the next time step are then
executed.

     The Runge-Kutta integration algorithm involves the computation of several
intermediate estimates of the total strain, subcell inelastic strain and subcell back stress.
To compute the intermediate estimates, first the total strain estimate is converted from the
structural axis system to the material axis system.  The stresses in each of the subcells are
then computed using the micromechanics equations.  Using the computed stresses, the
inelastic strain rate and back stress rate in each matrix subcell are computed using the
matrix constitutive equations.  The effective inelastic strain rate tensor for the composite
unit cell is computed using a volume averaging technique in the material axis system, and
the values are then transformed into the structural axis system.  Using the computed
effective Poisson’s ratios and axial-shear coupling coefficients, the total strain rate tensor
in structural coordinates is computed.  The intermediate values required for the Runge-
Kutta integration routine can then be determined.
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VERIFICATION ANALYSES

Material Properties

     To verify the micromechanics equations, a series of analyses were carried out using
two material systems.  Both material systems exhibit a nonlinear deformation response
for off-axis fiber orientation angles.  The first material system, supplied by Fiberite, Inc.,
consists of carbon IM-7 fibers in a 977-2 toughened epoxy matrix.  Unidirectional
laminates with fiber orientations of [0], [10], [45], and [90] were obtained.  Tensile tests
were conducted by Cincinnati Testing Labs of Cincinnati, Ohio at a strain rate of 1E-04
/sec on each of the composites [27].  Tensile and compressive tests at higher strain rates
were also conducted at different labs, but the results are currently questionable and
therefore will not be included here for verification purposes.  While the developed
methodology will eventually be applied to high strain rate impact applications, the current
verification studies will only be carried out for relatively low strain rates. The analysis
model, however, should be applicable to both low and high strain rate analyses.

     The IM7/977-2 composite has a fiber volume ratio of 0.60.  The IM-7 fibers have a
longitudinal modulus of 276 GPa, a transverse modulus of 13.8 GPa, a Poisson’s ratio of
0.25, and an in-plane shear modulus of 20.0 GPa [28].  The elastic modulus of the
Fiberite 977-2 toughened epoxy is 3.65 GPa, and the Poisson’s ratio is 0.40 [1].  The
inelastic properties for the Fiberite 977-2 matrix, required for the modified Ramaswamy-
Stouffer constitutive equations, are as follows for low strain rate tensile loading [1]:
Do=1E+04 /sec, n=0.50, Zo=1030 MPa, q=160, Ωm=69 MPa.

     The second material that was studied consists of carbon AS4 fibers in a PEEK
thermoplastic matrix.  This material system was considered due to the fact that the PEEK
thermoplastic is more ductile than the Fiberite 977-2 epoxy.  Therefore, as discussed in
more detail in [1], fewer approximations were required in order to determine the inelastic
material constants for the PEEK material.  As a result, the predictive capabilities of the
micromechanics equations could be more accurately evaluated.  Tensile stress-strain
curves were obtained by Weeks and Sun [4] for unidirectional composites with fiber
orientations of [14], [30], [45] and [90] at a strain rate of 1E-05 /sec, and composites with
fiber orientations of [15], [30], [45] and [90] at a strain rate of 0.1 /sec.

     The fiber volume ratio used for the AS4/PEEK material was 0.62 (a typical value for
this material based on representative manufacturer information).  The longitudinal
modulus of the AS-4 fibers is 214 GPa, the transverse modulus is 14 GPa, the Poisson’s
ratio is 0.2, and the in-plane shear modulus is 14 GPa [29].  For the PEEK matrix, the
elastic modulus is 4000 MPa and the Poisson’s ratio is 0.40 [1].  The inelastic material
constants for the modified Ramaswamy-Stouffer constitutive equations were determined
in [1] and are as follows: Do=1E+04 /sec, n=0.46, Zo=630 MPa, q=310, Ωm=52 MPa.
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Analysis Results

    The results predicted using the developed micromechanics equations (referred to as the
mechanics of materials method in the following discussion) are compared both to
experimental results and results obtained using the Generalized Method of Cells (GMC),
a well-established micromechanics analysis method [2].  In GMC, the composite unit cell
is divided into an arbitrary number of subcells.  For the current study, a four subcell
model was used, in order to make the unit cells for the two analysis methods consistent.
In GMC, the displacement field in each subcell is approximated using a first order Taylor
series expansion.  The average stress and strain rates in each subcell are then defined in
terms of the assumed displacement field.  Displacement and traction continuity is then
defined between the boundaries of the subcells and between adjoining unit cells.  A
system of equations then results which describes the combined elastic and inelastic
response of the composite based on the geometry and properties of the individual
constituents.  To compute the response of composites at off-axis fiber orientation angles,
classical lamination theory is used.  In the lamination theory, the unit cell is assumed to
be under a state of plane stress.  GMC is currently implemented within a computer code
entitled MAC (Micromechanics Analysis Code).  Version 2.0 of MAC was used to
conduct the analyses shown in this study [30].

     The stress-strain curves obtained for the IM7/977-2 laminates are shown in Figures 2-
5.  For all of the analyses, 1000 time steps were used.  In each of the figures, the results
computed using the developed micromechanics equations (labeled Mech. Mat.) are
compared to experimental values and results computed using the Generalized Method of
Cells (labeled GMC).  As can be seen in the figures, for the [0] and [90] fiber orientations
the analysis results from the two micromechanics methods are almost identical, and both
sets of computed results compare very well to the experimentally obtained values.

     For the [10] and [45] fiber orientations, the results predicted by the two
micromechanics methods are identical over the elastic portions of the response.  GMC,
however, predicts a softer response in the inelastic portion of the stress-strain curve than
the mechanics of materials approach.  For the [10] fiber orientation, the mechanics of
materials approach predicts both the shape of the stress-strain curve and the numerical
stress values much better than GMC.  For the [45] fiber orientation, while both
micromechanics methods predict stress values that compare reasonably well to the
experimental values, the mechanics of materials results more accurately capture the shape
of the stress-strain curve.  The reasons for the softer response predicted by GMC are
currently not well understood.  The plane stress assumptions used in the GMC laminate
theory may result in an overly high stress state being predicted in the matrix, which would
result in the softer inelastic response.  However, the comparisons seen between the
present micromechanics method and GMC are similar to the comparisons between the
Robertson and Mall model and the Method of Cells [21,22], which indicates that the
current results are at least consistent.
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     Stress-strain results computed for the AS4/PEEK composite are shown in Figures 6-9
for a strain rate of 1E-05 /sec, and in Figures 10-13 for a strain rate of 0.1 /sec.  The
results computed using the developed micromechanics equations are once again
compared both to experimental values and results computed using GMC.  As can be seen
in the figures, the trends in the results are very similar to those observed for the IM7/977-
2 composite.  However, the general comparison between the computed and experimental
results is much better for the AS4/PEEK composite than for the IM7/977-2 system,
particularly for the lower fiber orientation angles.  The reason for this improvement may
be related to the fact that, as discussed in [1], fewer approximations were required in
determining the inelastic material constants for the PEEK thermoplastic than for the
Fiberite 977-2 epoxy.  The results computed for the lower strain rate compare somewhat
better to the experimental values that the values computed at the higher strain rate.  The
cause for this improvement may be related to the fact that the strain rate of 0.1 /sec is
somewhat above the strain rate level at which the PEEK material was characterized.
Therefore, the nonlinear deformation response of PEEK at the higher strain rate may be
somewhat different that that predicted by the derived inelastic material constants.

     To demonstrate the ability of the micromechanics equations to capture the rate
dependence of the composite response, computed and experimental results for the
AS4/PEEK laminate with a [45] fiber orientation are shown in Figure 14.  Results
obtained at strain rates of 1E-05 /sec and 0.1 /sec are displayed.  As can be seen in the
figure, at the higher strain rate both the experimental and computed stress-strain curves
exhibit higher stress levels and less nonlinearity when compared to the results obtained at
the lower strain rate.  While the differences between the results at the two different strain
rates are not particularly dramatic, they are noticeable.  The results obtained at much
higher strain rates, on the order of several hundred per second, would most likely show an
even more significant variation from these results obtained at relatively low strain rates.
The important point to note from this figure is that the deformation response does vary
with strain rate, and the micromechanics equations do capture the rate dependence of the
material.

     The deformation response of a polymer matrix composite also varies with fiber
orientation angle.  Results computed using the developed micromechanics equations for
the AS4/PEEK composite at a strain rate of 1E-05 /sec are shown in Figure 15 for a
variety of fiber orientations.  As the fiber orientation angle is increased from more fiber
dominated orientations (such as [14]) to more matrix dominated orientations (such as [45]
or [90]), the predicted stress levels decrease dramatically.  These results are what are
expected for a continuous fiber reinforced unidirectional composite, which indicates that
the micromechanics equations are capturing this effect correctly.

     Overall, the deformation response predicted by the developed micromechanics equations
compares reasonably well to the experimental results for both material systems studied.
Furthermore, the predictions are reasonably good over a range of fiber orientation angles
and strain rates.  As seen in the predictions for the AS4/PEEK material, the rate dependence
of the material response is captured by the micromechanics predictions.
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     The results predicted using the micromechanics equations developed here also
compare well to the results predicted using the Generalized Method of Cells, and are at
least as accurate when compared to experimental values.  In addition, the developed
micromechanics technique is very computationally efficient.  Each of the analyses
presented here used less than five seconds of CPU time on a Sun SPARC 5 workstation .
Furthermore, the computer code for implementing the current micromechanics equations
is very compact, which will most likely simplify the implementation of the method into a
finite element code.

CONCLUSIONS

     In this study, a set of micromechanics equations based on constant stress and constant
strain assumptions have been developed to predict the inelastic, rate dependent response
of polymer matrix composites.  A unified state variable model based on the Ramaswamy-
Stouffer constitutive equations developed for metals is utilized to compute the inelastic
response of the polymer matrix.  The stress-strain deformation response of two
representative polymer matrix composites was predicted for several fiber orientation
angles and strain rates.  The results predicted using the micromechanics equations
compared well both to experimentally obtained values and the results predicted using an
alternative micromechanics analysis method.  The results indicate that the current
micromechanics model provides an accurate, efficient methodology for predicting the
inelastic rate dependent response of polymer matrix composites.

     Future work will involve developing a damage and failure model, based on local
failure mechanisms, which will be implemented within the micromechanics equations.
The combined deformation and failure model will then be implemented into a transient
dynamic finite element code.  Full deformation and failure analyses will then be
conducted for a high strain rate impact problem such as simulating a split Hopkinson bar
experiment on a composite specimen.  Ultimately, the developed methodology will be
used to simulate the response of composite structures subject to a high strain rate impact.
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Figure 1:  Geometry and Layout of Mechanics of Materials Unit Cell Model.

Figure 2:  Model Predictions for IM7/977-2 [0] Laminate
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Figure 3:  Model Predictions for IM7/977-2 [10] Laminate

Figure 4:  Model Predictions for IM7/977-2 [45] Laminate
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Figure 5:  Model Predictions for IM7/977-2 [90] Laminate

Figure 6: Model Predictions for AS4/PEEK [14] Laminate-Strain Rate=1E-05 /sec
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Figure 7:  Model Predictions for AS4/PEEK [30] Laminate-Strain Rate=1E-05 /sec

Figure 8:  Model Predictions for AS4/PEEK [45] Laminate-Strain Rate=1E-05 /sec
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Figure 9:  Model Predictions for AS4/PEEK [90] Laminate-Strain Rate=1E-05 /sec

Figure 10:  Model Predictions for AS4/PEEK [15] Laminate-Strain Rate=0.1 /sec
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Figure 11:  Model Predictions for AS4/PEEK [30] Laminate-Strain Rate=0.1 /sec

Figure 12:  Model Predictions for AS4/PEEK [45] Laminate-Strain Rate=0.1 /sec
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Figure 13:  Model Predictions for AS4/PEEK [90] Laminate-Strain Rate=0.1 /sec

Figure 14:  Model Predictions of Strain Rate Dependence of Deformation Response
for AS4/PEEK [45] Laminate
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Figure 15:  Model Predictions of Variation of Deformation Response of AS4/PEEK Composite
with Fiber Orientation Angle-Strain Rate=1E-05 /sec
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